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Abstract： Object detection algorithm based on deep learning has achieved great success， significantly better than 
the effect of traditional algorithms， and even surpassed human in many scenarios.  Unlike RGB cameras， infrared 
cameras can see objects even in the dark， which can be used in many fields like surveillance and autonomous driv⁃
ing.  In this paper， a lightweight target detection algorithm for embedded devices is proposed， which is accelerat⁃
ed and deployed using Xilinx Ultrascale+MPSoC FPGA ZU3EG.  The accelerator runs at a 350 MHz frequency 
clock with throughput of 551 FPS and power of only 8. 4 W.  The intersection over union （IoU） of the algorithm 
achieves an accuracy of 73. 6% on FILR datasets.  Comparing with the previous work， the accelerator design im⁃
proves performance by 2. 59× and reduces 49. 02% of the power consumption.
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摘要：基于深度学习的目标检测算法取得了很大成功，显著超越了传统算法，在很多场景下甚至可以和人类

相媲美。不同于可见光相机，红外相机可以在黑暗环境下识别物体，可以用于安防和无人驾驶等领域。本文

提出了面向嵌入式设备的轻量级目标检测算法，并采用赛灵思的Ultrascale+MPSoC ZU3EG FPGA加速并部署

该算法。加速器运行在350 MHz的时钟频率下，吞吐量达到了551 FPS，功耗仅有8.4 W。在准确率方面，该算

法在FLIR数据集下 IoU指标达到了 73.6%。在性能方面，相比于之前相同逻辑资源下性能最好的硬件加速器

Ultranet，该加速器设计将吞吐量提高了2.59倍，功耗降低了2.04倍，降低至原来的49.02%。
关 键 词：红外图像处理；实时嵌入式系统；可编程逻辑器件；卷积神经网络
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Introduction
Infrared systems have the unique advantage of re⁃

solving objects in dark environment or bad weather.  No⁃wosielski et al.  ［1］ took advantage of this feature and de⁃veloped a system to expand human vision， which was 
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used to detect pedestrians in driving at night to improve vehicle safety.  Mushahar et al.  ［2］ deployed an infrared system at the entrance of a public place to take contact⁃less temperature measurements while detecting pedestri⁃ans and prohibiting people with excessive body tempera⁃ture from entering the place.Although the infrared image has many advantages， it lacks contrast and edge information compared with the visible image.  Akula et al.  ［3］ proposed WignerMSER to solve this problem， which is a new detector based on the local feature of infrared image， and is used to enhance the effect of target detection.  Traditional image process⁃ing methods are often used in resource-constrained em⁃bedded systems because of low computational cost.  In or⁃der to enhance the detection effect， a two-stage image processing method is generally adopted.  Wu et al.  ［4］ ex⁃tracted the candidate box of pedestrians by using an adap⁃tive threshold and vertical edge operator.  Then， they car⁃ried out the bounding box in real-time of far-infrared pe⁃destrians using the morphological method.  Piniarski et 
al.  ［5］ first preprocessed the image with two global thresh⁃olds to expand the region of interest and then performed pedestrian segmentation.  Ragb et al.  ［6］ also adopted a two-stage algorithm.  Gradient information and texture in⁃formation were used to obtain local information of the im⁃age.  Then， the superpixel algorithm was used to find the detailed region without background information.Deep learning shows more robust performance than traditional algorithms in the field of target detection and is widely used in the field of infrared target detection.  Li 
et al. ［7］ proposed YOLO-FIRI based on YOLOv5 to solve the target detection problem of long distances， weak ener⁃gy， and low resolution in infrared images.  Yun et al.  ［8］ combined neural network YOLO and Long Short-Term Memory （LSTM） to detect the problem of occluded infra⁃red targets.  Narayanan et al.  ［9］ first used the YOLO net⁃work to extract features and then combined it with the support vector machine （SVM） classifier to classify 
（what）.Neural network algorithm has achieved good results in target detection， but there is huge challenge in embed⁃ded deployment.  To deploy neural network algorithms on embedded devices usually has many limitations， includ⁃ing real-time， limited computing units， and restricted on-chip memory.  Huang et al.  ［10］ implemented the YOLO-tiny neural network accelerator， quantifying the parame⁃ters of the network to 2-bit for deployment of low-cost de⁃velopment boards.  However， the computational perfor⁃mance of their accelerator only reaches 90. 6 GOP/s on the PYNQ-Z2 development board， which is difficult to be applied to practical scenarios.  In order to deploy the neu⁃ral network VGG16+SSD on the PYNQ-Z1 development board with fewer resources， Kang ［11］ reduced the weight by 87. 5% through accelerator-aware pruning.  However， it is a challenge to achieve such a high pruning rate on all networks.  In recent years， systolic array has been widely used in the accelerator design because of its high through⁃put.  The potential for designing a much more efficient da⁃ta path still remains to be explored.  The performance 

density of the YOLO-tiny accelerator accelerated by Li［12］ based on systolic arrays is only 0. 165 GOPS/DSP.FPGA can generate the corresponding structure ac⁃celerator according to the low precision weight.  This fea⁃ture gives full play to all the advantages of the design.  There have been many studies on deep learning accelera⁃tors based on FPGA.  Lee et al.  ［13］ proposed a structure of two multiply-accumulate （MAC） operations on one DSP.  In this design， a subtraction of the left-shifted mul⁃tiplier follows a double MAC processing unit.  This opera⁃tion is usually done by look-up tables （LUTs）， where comes the bottleneck of the system.  Fu et al.  explored how to optimize operations in deep learning on DSP slic⁃es： multiplication and addition of integers with 8-bit width.  However， their design only brought about a 1. 75× performance improvement compared ideally to a 2× improvement due to the bottleneck of DSP bit width.  The existing accelerators could not thoroughly combine the characteristics of FPGA architecture from the studies above.In order to solve this problem， we first put forward a lightweight neural network algorithm for infrared target detection.  Then， we use high-level synthesis （HLS） to implement the convolutional neural network accelerator and deploy this algorithm on the Ultra96v2 development board.  Finally， according to the characteristics of the FP⁃GA structure， we realize the 2× MAC operation on a DSP.  Experimental results show that when the input im⁃age resolution is 640*360 and the accelerator operating frequency is 350 MHz， the throughput of the accelerator reaches 551 FPS with 8. 4 W of power consumption.  All in all， this paper designed a streaming-based accelerator to effectively deploy embedded infrared target detection algorithm.The main contributions of this paper are summarized as follows：• This paper implemented a pipeline style infrared target detection accelerator with high throughput using high level synthesis.• This paper realized 2× MAC in a single DSP on FPGA.• This paper significantly reduced the power of ac⁃celerator by using software and hardware co-optimization.The remaining part of the paper proceeds as fol⁃lows： The next section introduces the target network of acceleration briefly.  Section II gives a basic introduction to the concept of high-level synthesis for hardware de⁃sign.  Section III describes our approach to hardware de⁃sign in detail and the optimization method of the accelera⁃tor is delivered.  Section IV is the experimental results and analysis.  Section V summarizes our work.
1 Proposed object detection on thermal 
images 

Although convolutional neural network algorithm is widely used in the field of target detection and has achieved good results， however， to pursue accuracy， current neural network models always comes with a large quantity of layers and parameters.  These networks be⁃
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come increasingly unsuitable for the deployment of edge devices.  Lightweight network， which aims to reduce the number and complexity of model parameters while main⁃taining model accuracy， has gradually become the fo⁃cused research in computer vision.As shown in Fig.  1， we set the backbone network of the accelerator to SkyNet［14］.  SkyNet is a hardware-friendly and lightweight neural network for target detec⁃tion and is the 2019 DAC-SDC champion model.  In this model， the depthwise convolution［15］ is used to replace the traditional convolution， which significantly reduces the computation and parameter of the model.  In order to detect small targets， the bypass provides more low-level and high-resolution features to improve the target detec⁃tion effect.  SkyNet also uses YOLO's detection head and two anchors to bound box regression.

Network designed in top-down flow tends to have more layers and parameters.  More parameters do not nec⁃essarily lead to better performance in a particular datas⁃et.  Table 1 compares IoU precision and parameter size between several classical networks and SkyNet in the DAC-SDC dataset.  It can be found that the performance of network object detection with large parameters such as ResNet and VGG lags behind SkyNet in the DAC-SDC dataset.  This situation shows that neural network is not just a simple algorithm that depends on large parame⁃ters， and it is possible to achieve object detection effi⁃ciently in the embedded device.

SkyNet adopts the same detection method as YOLO for object detection.  Firstly， the images of the input mod⁃el were divided into 20×40 grids， and each grid predict⁃

ed objects centered on the grid according to the anchor.  In order to reduce calculation amount， this paper set the number of grids to two.  Anchor with a fixed size is gener⁃ally adopted in Fast-RCNN， but the method may not suit all objects with different sizes.  In order to improve the training accuracy， a clustering algorithm is used to select anchors according to the dataset.To simplify the hardware design， we used ReLU in⁃stead of ReLU6.  The FLIR dataset is used for training， which contains 14，452 infrared images， including peo⁃ple， bicycles， cars， etc.  and annotated with MSCOCO dataset format.  We train 100 epochs on the training set with batch size 30.  The initial learning rate is 1e-2， and the IoU reaches 73. 6%.  We quantify the network weight to 5 bits and the feature map to 8 bits， and the final IoU is 72. 3%.  The object detection results on the infrared dataset are shown in Fig 2.  SkyNet has a good perfor⁃mance on infrared datasets.  It can meet the requirement of embedded device target detection.
2 HLS preliminaries 

Before we present our hardware design， we first re⁃view some basic concepts of high-level synthesis （HLS） design.  HLS simplifies the development process of tradi⁃tional hardware and uses C/C++ language to achieve the hardware design and development completed by tradition⁃al RTL.As shown in Fig.  3， we use initial interval and la⁃tency to describe the performance of a hardware module.  Latency is defined as the number of clock cycles required for the function to compute all output values.  The smaller the number of clocks cycles， the better the hardware per⁃forms.  To achieve the goal of reaching a smaller latency， more resources， sometimes intolerable resources are con⁃sumed.  Initial interval （II） is defined as the number of clock cycles before the function can accept new input da⁃ta.  The little II is， the higher the throughput of the hard⁃ware is， the more circuit results can be obtained at the same time.  However， this requires designing data path skillfully to achieve a pipelined circuit structure.Take the neural network accelerator as an example.  Without parallel design， each network layer can only run sequentially.  In the whole design， latency and initial in⁃terval are equal.  Each forward propagation can only wait to complete the last calculation before the module can start the consecutive calculation.  In the process of wait⁃ing for the end of other stages， multiple computing units are idle， resulting in declining of performance degrada⁃tion and computational efficiency.When the pipeline is used for optimization， the cir⁃cuit takes less time to receive new data and completes more tasks per clock cycle.  Each stage of the pipeline is relatively independent.  As long as there is uncalculated data in each stage， the circuit will continue to work.  Bal⁃anced pipeline significantly improves the efficiency of computation so that the processing speed is greatly im⁃proved when dealing with continuous tasks.The deep learning accelerator divides the pipeline by layers.  Due to the massive difference in the workload 

Fig.  1　The network structure of infrared target detection algo‐
rithm based on deep learning
图1　基于深度学习的红外目标检测算法网络结构

Table 1　SkyNet parameters and performance compari⁃
son with the classical network on DAC-SDC 
dataset

表 1　SkyNet和经典网络参数量和性能在DAC-SDC数据集
上的比较

Net name
Parameter

IoU

ResNet-
18

11. 18 M
0. 61

ResNet-
34

21. 28 M
0. 26

ResNet-
50

23. 51 M
0. 32

VGG-16
14. 71 M

0. 25

SkyNet
0. 44 M
0. 73
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between different layers， there is a vast distinction of cal⁃culation amount in different stages of simple pipeline im⁃plementation.  In order to solve this problem， we can place corresponding computing resources according to the amount of calculation in each layer so that the clock cycles of each pipeline stage are similar.  As shown in Fig.  4， a balanced pipeline design makes the calculation efficiency of the circuit higher and reduces the idle time of the computing unit.
3 Hardware implementation 
3. 1　Overview of accelerator architecture　The accelerator is divided into two parts.  CPU is in charge of reading image files， and FPGA is for realizing the deep learning accelerator with high parallelism.  The data is exchanged between CPU and FPGA through the DMA module.  The deep learning accelerator adopts pipe⁃

line structure， which is mainly composed of three parts： image pre-processing， convolution and max-pooling mod⁃ule.  Divide the pipeline into stages with each convolu⁃tion or max-pooling operation.  Each convolutional or max-pooling layer is a computing unit， using FIFOs as in⁃terconnection.  The neural network weights are stored in the on-chip block RAMs， and all the computing units work in parallel simultaneously to maximize resource uti⁃

Fig.  2　SkyNet object detection result on FLIR dataset
图2　SkyNet在FLIR数据集上的检测结果

Fig.  3　Concepts of initial interval and latency
图3　初始间隔和延迟的定义

Fig.  4　The accelerator design for balancing all stages of pipeline
图4　各级流水线平衡的加速器设计
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lization.
3. 2　Balanced pipeline　The slowest stage determines the throughput of pipe⁃line-style circuits.  For pipeline-style circuits， the unbal⁃anced pipeline will lead to the bubbles in the pipeline， leading to failure of computing units working at full speed.  In other words， an unbalanced pipeline stage be⁃tween different compute units indirectly leads to the waste of resources on the chip.  The computation amount of different neural network layers is significantly differ⁃ent， making it very important to balance.After dividing each convolution or max-pooling oper⁃ation into a pipeline stage， we can approximate the com⁃plexity of hardware according to the number of input and output feature map channels， and the size of the convolu⁃tion kernel.The feature map is the intermediate result of opera⁃tors at the convolution layer or max-pooling layer.  We use W to represent the width of the feature map， H to rep⁃resent the height of the feature map， Cin to represent the number of input channels， Cout to represent the number of output channels of the feature maps， and K to represent the size of the convolution kernel.  When the stride is equal to 1， the computation amount of the depthwise con⁃volution operation is

TDWC = H × W × K × K × Cin .　（1）The computation amount of the pointwise convolu⁃tion operation is
TPWC = H × W × Cin × Cout .　（2）We use the number of multiply-accumulate opera⁃tions （MAC） to represent the computation of the convolu⁃tion layer in the deep learning algorithm.  #MACn is used to indicate the amount of computation at the nth layer.  The parallelism is used to measure the multiply-accumu⁃late operations that each clock can complete， and the parallelism PFn represents the amount of computation at the nth layer.  Throughput is used to evaluate the number of operator operations that can be done per second.  Tn is used to represent the throughput of the nth layer.  Assum⁃ing that the clock frequency running on the hardware is 

fclk， Tn can be expressed as

Tn = PFN#MACn
× fclk .　（3）

It is an upper bound on the reachable throughput of each accelerator operator.  PFaccel is used to represent the parallelism of the accelerator， and is defined as：
PFaccel = max (PFi ) ,i ∈ 1,2,…,N .　（4）

Assuming that the accelerator has only one clock do⁃main and using the condition of pipeline balance T1 =
T2 = … = TN， the theoretical parallelism of the nth layer can be obtained by the following equation：

PFn = #MACn

max ( )#MACi

× PFaccel,i ∈ 1,2,…,N .　（5）
When the result is a fraction， it is necessary to round up to obtain the parallelism of integers， thus sim⁃plifying the design of accelerators.  Rounding up intro⁃duces only minor pipeline mismatches， and the loss of re⁃source utilization is negligible， having no impact on per⁃formance.

3. 3　Accelerator design based on high level synthe⁃
sis　Datapath needs to be carefully designed for the hard⁃ware to deploy deep learning algorithms on resource-lim⁃ited embedded devices effectively.  In order to make full use of on-chip resources， all weights are stored on the chip， and due to the bandwidth of on-chip memory， the time of weight accessing can be ignored.  In order to mini⁃mize data caching buffer size between neural network lay⁃ers， our design reuses feature map as much as possible.  All intermediate data is channel continuous as it passes.  We introduce the realization of each operator respectively below and assuming that the size of the output feature map of the previous layer is H × W × N_ICH.
3. 3. 1　Pointwise convolution datapath design　Fig.  6 shows the design of pointwise convolution da⁃ta path.  We divide the feature map into many sliding cubes with sizes of 1×1×N_IN.  Each time computing unit multiplies and accumulates with one cube in the fea⁃ture map and N_IN weights of N_OUT channels.  It is equivalent to having the parallelism of the accelerator set to N_IN× N_OUT.  PW unit takes N_ICH/N_IN clock cy⁃cles to compute the results of N_OUT consecutive chan⁃nels and passes them to the next layer.  PW unit takes 

Fig.  5　FPGA inference accelerator architecture
图5　FPGA加速器架构

Fig.  6　Datapath of pointwise convolution
图6　点卷积的数据通路
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N_OCH × H × W / N_OUT computations to get the result of PW convolution.  The pseudocode for PW convolution is as follows：

3. 3. 2　Depthwise convolution datapath design　

As is shown in Fig.  7 and Fig.  8， the calculation of depthwise is divided into two steps.  First， line buffer and window buffer are used to reduce the bottleneck of memory access， and the feature map within the range of 3×3 convolution kernel size on N_IO channels is convert⁃ed into data flow with N_IO×BIT_WIDTH and depth of 9.

The DW unit gets one-weight data from memory with data width of N_IO×WEIGHT_WIDTH and depth of 9 and then multiplies the feature map with the pre-ordered weights in the DW unit to obtain the N_IO channels re⁃sult.  The result of DW convolution can be obtained by 
N_OCH × H × W / N_IO times computation.  The pseudo⁃code of DW Conv is as follows：

3. 3. 3　Maxpool datapath design　The design of the pipeline structure of max-pooling is shown in the Fig.  9.  In this design， the stride of max-pooling is 2， and the operation is performed in two main steps， pool1D and pool2D.  Pool1D is in charge of maxi⁃mum pooling in the horizontal direction， comparing every 

Algorithm 1 Pseudocode for Pointwise Convolution Layer
Input：： in<N_IN × BIT_IN>： feature map input

weight< N_OUT × N_IN × BIT_WT> ［N_OCH / N_OUT］［N_ICH / 
N_IN］ ： weight of neural network

N_IN： number of input parallel factor
N_OUT： number of output parallel factor

N_ICH： number of input channel
N_OCH： number of output channel

BIT_IN： bitwidth of input
BIT_WT： bitwidth of weight
BIT_OUT： bitwidth of output
#pragma HLS DATAFLOW

for fo = 0； fo<N_OCH / N_OUT ； ++fo do

  for fi = 0； fi<N_ICH / N_IN ； ++fi do

  #pragma HLS PIPELINE II=1
    for i = 0； i<N_IN ； ++i do

    #pragma HLS UNROLL
      for o = 0； o<N_OUT ； ++o do

        out<SLICE（BIT_OUT， o）> += in<SLICE（BIT_IN， i）> * 
weight<SLICE（BIT_WT， N_IN * o + i）>［fo］［fi］；

      end for

    end for

  end for

end for

Output：： out<N_OUT * BIT_OUT> ： feature map output

Fig.  7　Datapath of depthwise convolution
图7　深度卷积的数据通路

Fig.  8　Using line buffer to optimize datapath
图8　使用 line buffer优化深度卷积的数据通路

Algorithm 2 Pseudocode for Depthwise Convolution Layer
Input：： in<N_IO×BIT_IN> ： feature map input

weight <N_IO×BIT_WT>［N_CH / N_IO］［9］ ： weight of neural network
N_IO ： number of input parallel factor

N_CH ： number of input channel
BIT_IN ： bitwidth of input

BIT_WT ： bitwidth of weight
BIT_OUT ： bitwidth of output
#pragma HLS DATAFLOW

for f = 0； f < N_CH / N_IO； ++f do

  for k = 0； k<9； ++k do

    #pragma HLS PIPELINE II=1
    wt_buf = weight［f］［k］

    for i = 0； i<N_IO； ++i do

      #pragma HLS UNROLL
      for o = 0； o<N_OUT ； ++o do

        out<SLICE（BIT_OUT， i）> += in<SLICE（BIT_IN， i）> * 
wt_buf <SLICE（BIT_WT， i）>；

      end for

    end for

  end for

end for

Output：： out<N_IO * BIT_OUT> ： feature map output
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two received data （including N_CH channels） and out⁃putting one data.  Pool2D performs the maximum of verti⁃cal pooling.  Assuming that the number of rows in the fea⁃ture map starts at 0， Pool2D first caches data from even rows and outputs the final result after receiving one of the odd rows.  Max-pooling module works in parallel with multiple channels， and the amount of parallelism de⁃pends on the number of PW’s output channels.
3. 4　Double MACs　Table 2 shows that convolution requires a lot of mul⁃tiplication and addition operations.  MAC relies on the limited DSP core of the FPGA， which provides better per⁃formance and lower power consumption.  Although the FPGA can use LUTs to realize multipliers， it also causes timing issue.  In order to improve the performance of the system on the limited computing resources and embedded devices， we implement a high-performance DSP reuse technology.

The DSP slice DSP48E2 in Xilinx FPGA is capable of completing a 27×18 bit width multiplication operation and 48-bit accumulation operation.  Our network’s fea⁃ture map and weights are quantized to low bits （8 and 5 bits）， making it possible for a DSP slice to perform two low-width MACs in a single stage.  We can use a high-width multiplication to take place of two low-width multi⁃plications and split the result into two numbers.Fig.  10 shows the internal structure of Xilinx’s DSP48E2 slice.  Two different weights are input from port 

A and port D into the pre-adder which concatenates the two weights.  The feature map is input to the multiplier from port B， and the result of the feature map and the spliced data after the multiplication operation is sent to the accumulator.  If there is data to be accumulated， the data is input to the accumulator through port C.DSP units used to complete vector MACs and the calculation result of each unit is transmitted to the port C of the next DSP.  The vector I0 and two vectors W0 and W1 align through delay and finally input to the PE.  W1 needs sign extension and left shifting.  The output Y can be ex⁃pressed as
Y = (W1 ≪ 14 + W0 ) × I0 .　（6）The addition and multiplication are implemented by the pre-adder and multiplier in the DSP block， respec⁃tively.  The cascaded adder implements the accumula⁃tion.  Reorganize （6） to get

Y = W1 × I0 ≪ 14 + W0 × I0 = O1 ≪ 14 + O0,　（7）
O0 and O1 are the dots product results.  Assuming that O0 and O1 have a bit width of 13， and O0 is equal to the low part of Y ， while O1 will be affected by the sign bit of O0 and needs to be corrected.

O0 = Y [12:0] ,　（8）
O1 = Y [26:14] + Y [13] .　（9）

Only a 13 bit carry chain is needed to implement the result correction.  Our design requires a small amount of extra logic while doubling the DSP utilization.

Fig.  11 shows how the PE array in pointwise convo⁃lution works.  The yellow line represents the feature map passed in from the previous layer， and the green line is the input weight of parameter.  With 2× MACs， both weights enter a PE simultaneously.
3. 5　System optimization　Fig.  12 is the optimal method for the whole system test.  The test picture data is saved on the SD card.  In or⁃der to optimize the bottleneck of image reading， multi⁃threading is used to reduce the delay of image reading on 

Fig.  9　Datapath of maxpool
图9　最大池化的数据通路

Fig.  10　DSP48E2 slice architecture
图10　DSP48E2的硬件架构

Fig.  11　Datapath of process element array
图11　处理单元阵列的数据通路
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the Linux operating system， and the libjpeg-turbo library is used to speed up image decoding.  Ping-pong buffer re⁃duces the system bottleneck when the accelerator on FP⁃GA communicates with the programmable system.
4 Experiment and analysis 
4. 1　Experimental setup　We deploy the deep learning accelerator on the Ul⁃tra96v2 evaluation board based on the SkyNet network.  Ultra96v2 evaluation board is equipped with a Xilinx Zynq Ultrascale+MPSoC ZU3EG hybrid chip， mainly composed of CPU and FPGA.  The logical part of the chip is 16 nm FPGA， which has 7. 6 Mb BRAMs， 360 DSPs， and 70. 6 K LUTs.  The CPU part contains quad ARM Cortex-A53 CPU.  Use the IP driver provided by the PYNQ framework to control the accelerator.  As is shown in Table 2， K represents the size of the kernel， C repre⁃sents the number of output channels at this layer， FM represents the size of the feature map， #MAC represents the amount of computation， PF represents the parallel factor.  SkyNet consists of six depthwise convolutions and seven pointwise convolutions.  The 10th convolution layer has the most extensive computation， and its parallelism is set to 256.  The parallelism of other layers is set ac⁃cording to Eq.  （5）.Part of the parallel factor is rounded up to simplify the design of the accelerator.  The specific settings are shown in the Table 2.  Thanks to the weights of the origi⁃nal neural network indicated by floating-point being quantized to 5 bits and the activation to 8 bits， and the weight size of the entire network is reduced to 277 KB， making it possible to store all the weight data on the chip.  The intersection over union （IoU） of the original network can reach an accuracy of 73. 6% on the same da⁃ta set， while the quantized model is reduced by 1. 3% to 72. 3%.  Our accelerator consumes 206. 5 block RAMs
（BRAM）， 360 DSPs， 50518 look-up-tables （LUT）， and 40488 flip-flops （FF）.  The accelerator has no tim⁃ing issue， and the design can run at 350 MHz clock fre⁃quency.

Table 3　Comparison with DAC-SDC accelerator design
表3　和DAC-SDC竞赛加速器设计对比

Model
# of MACs
# of PFs

Frequency（MHz）
BRAMs

DSPs
LUTs
FFs

Precision（W，A）
IoU

Throughput（FPS）
Power（W）

Energy（mJ/img）

iSmart
SkyNet
465M
256
220
209
329

53809
55833
11，9

73. 1%
25

13. 5
540

BJUT Run⁃
ner

UltraNet
272M
448
166

150. 5
360

44633
58813

4，4
65. 6%

213
6. 66

31

SkrSkr
SkyNet
465M
512
333
209
329

52875
55278

6，8
73. 1%

52
6. 7
128

Our work
SkyNet
465M
764
350

206. 5
360

50518
40488

5，8
72. 3%

551
8. 4

15. 2

Fig.  12　System optimization
图12　系统优化

Table 2　Skynet’s parallelism factors of each layer
表2　SkyNet神经网络并行度设置

Layer
1
2
3
4
5
6
7
8
9

10
11
12
13

Total

Type
DW
PW
DW
PW
DW
PW
DW
PW
DW
PW
DW
PW
PW

K
3
1
3
1
3
1
3
1
3
1
3
1
1

C
3

48
48
96
96

192
192
384
384
512

1280
96
10

FM
160×320
160×320
80×160
80×160
40×80
40×80
20×40
20×40
20×40
20×40
20×40
20×40
20×40

#MAC
1382400
7372800
5529600

58982400
2764800

58982400
2764800

58982400
2764800

157286400
9216000

98304000
768000

465100800

PF
3

12
12
96
6

96
3

96
6

256
16

160
2

764
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4. 2　Accelerator throughput analysis　The neural network SkyNet’s forward propagation requires 465 MMAC operations.  Our accelerator is de⁃signed to do 764 multiplications per clock cycle.  When the accelerator runs at a 350 MHz clock frequency， the theoretical throughput should be 764×350 MHz = 267. 4 GMACs.  The actual test results of the accelerator in Ta⁃ble 3 show a frame rate of 551 FPS and a throughput of 256. 2 GMACs.  The computational efficiency of the ac⁃celerator is 256. 2 / 267. 4 = 95. 8%.  Such high computa⁃tional efficiency mainly benefits from the balanced pipe⁃line structure and the ultra-high bandwidth of on-chip memory.  Overall， our accelerator achieves a computa⁃tional efficiency of 95. 8% at 350 MHz.
4. 3　Comparison with other works　Comparing our design with the design of the previ⁃ous design automation conference-system design contest 
（DAC-SDC） winners in Table 3， we can find the superi⁃ority of the accelerator design in this paper.  The experi⁃mental data are from the official website of DAC-SDC.  BJUT Runner is the champion of DAC-SDC 2020.  They also adopted the pipeline-style accelerator design， but the unreasonable pipeline-style setting of their accelera⁃tor made it unable to give full play to the advantages of pipeline-style.  Our work is 2. 59× better in performance and 2. 04× better in energy efficiency than theirs.  The computational efficiency was only 77. 8% with theoretical throughput of 448×166 MHz = 74. 4 GMACs/s and actual throughput of 57. 9 GMACs/s.SkrSkr was the second place in DAC-SDC 2020.  Their design used a convolution computing engine with very high parallelism in FPGA to calculate one convolu⁃tion of a fixed size each time.  The neural network layers were calculated sequentially， and the intermediate re⁃sults and the weight of the neural network were passed re⁃peatedly between the on-chip memory and DDR， result⁃ing in performance degradation.  Our design has a 10. 6× throughput and 8. 4× power consumption improvement over SkrSkr.
5 Conclusion 

This paper presents a low-power convolutional neu⁃ral network accelerator for infrared target detection on 

embedded devices.  A design method to minimize hard⁃ware resource consumption is proposed for this hardware structure.  The accelerator achieves 249. 7 GMACs throughput on the Xilinx ZU3EG device and achieves the best computational efficiency and energy efficiency com⁃pared to previous works.  This low-powered deep learning FPGA accelerator has high practical value.
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